Module fpdf.encryption
Utilities to perform encryption following the PDF standards.
The contents of this module are internal to fpdf2, and not part of the public API. They may change at any time without prior warning or any deprecation period, in non-backward-compatible ways.
Functions
def int32(n: int) ‑> int
-
Expand source code Browse git
def int32(n: int) -> int: """convert long to signed 32 bit integer""" n = n & 0xFFFFFFFF return (n ^ 0x80000000) - 0x80000000
convert long to signed 32 bit integer
def md5(data: bytes | bytearray) ‑> bytes
-
Expand source code Browse git
def md5(data: Union[bytes, bytearray]) -> bytes: h = hashlib.new("md5", usedforsecurity=False) h.update(data) return h.digest()
Classes
class ARC4
-
Expand source code Browse git
class ARC4: """ This is a simplified version of the ARC4 (alleged RC4) algorithm, created based on the following sources: * Wikipedia article on RC4 * github.com/manojpandey/rc4 (MIT License) * http://people.csail.mit.edu/rivest/pubs/RS14.pdf Having this ARC4 implementation makes it possible to have basic encryption functions without additional dependencies """ MOD = 256 def KSA(self, key: bytes) -> list: key_length = len(key) S = list(range(self.MOD)) j = 0 for i in range(self.MOD): j = (j + S[i] + key[i % key_length]) % self.MOD S[i], S[j] = S[j], S[i] return S def PRGA(self, S: list) -> Iterable[int]: i = 0 j = 0 while True: i = (i + 1) % self.MOD j = (j + S[i]) % self.MOD S[i], S[j] = S[j], S[i] K = S[(S[i] + S[j]) % self.MOD] yield K def encrypt(self, key: bytes, text: Union[bytes, bytearray]) -> list: keystream = self.PRGA(self.KSA(key)) res = [] for c in text: res.append(c ^ next(keystream)) return res
This is a simplified version of the ARC4 (alleged RC4) algorithm, created based on the following sources: * Wikipedia article on RC4 * github.com/manojpandey/rc4 (MIT License) * http://people.csail.mit.edu/rivest/pubs/RS14.pdf
Having this ARC4 implementation makes it possible to have basic encryption functions without additional dependencies
Class variables
var MOD
-
The type of the None singleton.
Methods
def KSA(self, key: bytes) ‑> list
-
Expand source code Browse git
def KSA(self, key: bytes) -> list: key_length = len(key) S = list(range(self.MOD)) j = 0 for i in range(self.MOD): j = (j + S[i] + key[i % key_length]) % self.MOD S[i], S[j] = S[j], S[i] return S
def PRGA(self, S: list) ‑> Iterable[int]
-
Expand source code Browse git
def PRGA(self, S: list) -> Iterable[int]: i = 0 j = 0 while True: i = (i + 1) % self.MOD j = (j + S[i]) % self.MOD S[i], S[j] = S[j], S[i] K = S[(S[i] + S[j]) % self.MOD] yield K
def encrypt(self, key: bytes, text: bytes | bytearray) ‑> list
-
Expand source code Browse git
def encrypt(self, key: bytes, text: Union[bytes, bytearray]) -> list: keystream = self.PRGA(self.KSA(key)) res = [] for c in text: res.append(c ^ next(keystream)) return res
class CryptFilter (mode: str, length: int)
-
Expand source code Browse git
class CryptFilter: """Represents one crypt filter, listed under CF inside the encryption dictionary""" def __init__(self, mode: str, length: int) -> None: super().__init__() self.type = Name("CryptFilter") self.c_f_m = Name(mode) self.length = int(length / 8) def serialize(self) -> str: obj_dict = build_obj_dict({key: getattr(self, key) for key in dir(self)}) return pdf_dict(obj_dict)
Represents one crypt filter, listed under CF inside the encryption dictionary
Methods
def serialize(self) ‑> str
-
Expand source code Browse git
def serialize(self) -> str: obj_dict = build_obj_dict({key: getattr(self, key) for key in dir(self)}) return pdf_dict(obj_dict)
class EncryptionDictionary (security_handler: StandardSecurityHandler)
-
Expand source code Browse git
class EncryptionDictionary(PDFObject): """ This class represents an encryption dictionary PDF 32000 reference - Table 20 The PDF trailer must reference this object (/Encrypt) """ def __init__(self, security_handler: "StandardSecurityHandler") -> None: super().__init__() self.filter = Name("Standard") self.length = security_handler.key_length self.r = security_handler.revision self.o = f"<{security_handler.o.upper()}>" self.u = f"<{security_handler.u.upper()}>" if security_handler.revision == 6: self.o_e = f"<{security_handler.oe.upper()}>" self.u_e = f"<{security_handler.ue.upper()}>" self.perms = f"<{security_handler.perms.upper()}>" self.v = security_handler.version self.p = int32(security_handler.access_permission) if not security_handler.encrypt_metadata: self.encrypt_metadata = "false" if security_handler.cf: self.c_f = pdf_dict({"/StdCF": security_handler.cf.serialize()}) if security_handler.encryption_method == EncryptionMethod.NO_ENCRYPTION: self.stm_f = Name("Identity") # crypt filter for streams self.str_f = Name("Identity") # crypt filter for strings else: self.stm_f = Name("StdCF") # crypt filter for streams self.str_f = Name("StdCF") # crypt filter for strings
This class represents an encryption dictionary PDF 32000 reference - Table 20 The PDF trailer must reference this object (/Encrypt)
Ancestors
Inherited members
class StandardSecurityHandler (fpdf,
owner_password: str,
user_password: str | None = None,
permission: AccessPermission = 3900,
encryption_method: EncryptionMethod = EncryptionMethod.RC4,
encrypt_metadata: bool = False)-
Expand source code Browse git
class StandardSecurityHandler: """ This class is referenced in the main PDF class and is used to handle all encryption functions * Calculate password and hashes * Provide encrypt method to be called by stream and strings * Set the access permissions on the document """ DEFAULT_PADDING = ( b"(\xbfN^Nu\x8aAd\x00NV\xff\xfa\x01\x08..\x00\xb6\xd0h>\x80/\x0c\xa9\xfedSiz" ) def __init__( self, fpdf, owner_password: str, user_password: Union[str, None] = None, permission: AccessPermission = AccessPermission.all(), encryption_method: EncryptionMethod = EncryptionMethod.RC4, encrypt_metadata: bool = False, ): self.fpdf = fpdf self.access_permission = ( 0b11111111111111111111000011000000 if permission is None else (0b11111111111111111111000011000000 | permission) ) self.owner_password = owner_password self.user_password = user_password if user_password else "" self.encryption_method = encryption_method self.cf = None self.key_length = 128 if import_error and self.encryption_method in ( EncryptionMethod.AES_128, EncryptionMethod.AES_256, ): raise EnvironmentError( "cryptography module not available" " - Try: 'pip install cryptography' or use RC4 encryption method" f" - Import error was: {import_error}" ) if self.encryption_method == EncryptionMethod.AES_128: self.version = 4 self.revision = 4 fpdf._set_min_pdf_version("1.6") self.cf = CryptFilter(mode="AESV2", length=self.key_length) elif self.encryption_method == EncryptionMethod.AES_256: self.version = 5 self.revision = 6 fpdf._set_min_pdf_version("2.0") self.key_length = 256 self.cf = CryptFilter(mode="AESV3", length=self.key_length) elif self.encryption_method == EncryptionMethod.NO_ENCRYPTION: self.version = 4 self.revision = 4 fpdf._set_min_pdf_version("1.6") self.cf = CryptFilter(mode="V2", length=self.key_length) else: self.version = 2 self.revision = 3 fpdf._set_min_pdf_version("1.5") # not including crypt filter because it's only required on V=4 # if needed, it would be CryptFilter(mode=V2) self.encrypt_metadata = encrypt_metadata def generate_passwords(self, file_id: str) -> None: """File_id is the first hash of the PDF file id""" self.file_id = file_id self.info_id = file_id[1:33] if self.revision == 6: self.k = self.get_random_bytes(32) self.generate_user_password_rev6() self.generate_owner_password_rev6() self.generate_perms_rev6() else: self.o = self.generate_owner_password() self.k = self.generate_encryption_key() self.u = self.generate_user_password() def get_encryption_obj(self) -> EncryptionDictionary: """Return an encryption dictionary""" return EncryptionDictionary(self) def encrypt( self, text: Union[str, bytearray, bytes], obj_id: int ) -> Union[str, bytes]: """Method invoked by PDFObject and PDFContentStream to encrypt strings and streams""" LOGGER.debug("Encrypting %s", text) return ( self.encrypt_stream(text, obj_id) if isinstance(text, (bytearray, bytes)) else self.encrypt_string(text, obj_id) ) def encrypt_string(self, string: str, obj_id: int) -> str: if self.encryption_method == EncryptionMethod.NO_ENCRYPTION: return PDFString(string, encrypt=False).serialize() LOGGER.debug("Encrypting string: %s", string) try: string.encode("latin-1") return f"<{bytes(self.encrypt_bytes(string.encode('latin-1'), obj_id)).hex().upper()}>" except UnicodeEncodeError: return f'<{hexlify(bytearray(self.encrypt_bytes(BOM_UTF16_BE + string.encode("utf-16-be"), obj_id))).decode("latin-1")}>' def encrypt_stream(self, stream: bytes, obj_id: int) -> bytes: if self.encryption_method == EncryptionMethod.NO_ENCRYPTION: return stream return bytes(self.encrypt_bytes(stream, obj_id)) def is_aes_algorithm(self) -> bool: return self.encryption_method in ( EncryptionMethod.AES_128, EncryptionMethod.AES_256, ) def encrypt_bytes(self, data: bytes, obj_id: int): """ PDF32000 reference - Algorithm 1: Encryption of data using the RC4 or AES algorithms Append object ID and generation ID to the key and encrypt the data Generation ID is fixed as 0. Will need to revisit if the application start changing generation ID """ h = hashlib.new("md5", usedforsecurity=False) h.update(self.k) h.update( (obj_id & 0xFFFFFF).to_bytes(3, byteorder="little", signed=False) ) # object id h.update( (0 & 0xFFFF).to_bytes(2, byteorder="little", signed=False) ) # generation id if self.is_aes_algorithm(): h.update(bytes([0x73, 0x41, 0x6C, 0x54])) # add salt (sAlT) for AES key = h.digest() if self.is_aes_algorithm(): return self.encrypt_AES_cryptography(key, data) return ARC4().encrypt(key, data) def encrypt_AES_cryptography(self, key: bytes, data: bytes) -> bytes: """Encrypts an array of bytes using AES algorithms (AES 128 or AES 256)""" iv = bytearray(self.get_random_bytes(16)) padder = PKCS7(128).padder() padded_data = padder.update(data) padded_data += padder.finalize() cipher = ( Cipher(AES128(key), modes.CBC(iv)) if self.encryption_method == EncryptionMethod.AES_128 else Cipher(AES256(self.k), modes.CBC(iv)) ) encryptor = cipher.encryptor() data = encryptor.update(padded_data) + encryptor.finalize() iv.extend(data) return iv @classmethod def get_random_bytes(cls: Type["StandardSecurityHandler"], size: int) -> bytes: """ https://docs.python.org/3/library/os.html#os.urandom os.urandom will use OS-specific sources to generate random bytes suitable for cryptographic use """ return urandom(size) @classmethod def prepare_string(cls: Type["StandardSecurityHandler"], string: str) -> bytes: """ PDF2.0 - ISO 32000-2:2020 All passwords for revision 6 shall be based on Unicode. Preprocessing of a user-provided password consists first of normalizing its representation by applying the "SASLPrep" profile (Internet RFC 4013) of the "stringprep" algorithm (Internet RFC 3454) to the supplied password using the Normalize and BiDi options. Next, the password string shall be converted to UTF-8 encoding, and then truncated to the first 127 bytes if the string is longer than 127 bytes Python offers a stringprep module with the tables mapped in methods """ # Mapping def char_map(char: str) -> str: if not char: return "" # Commonly mapped to nothing if stringprep.in_table_b1(char): return "" # Map non-ascii space characters to space if stringprep.in_table_c12(char): return "\u0020" return char if len(string) < 1: return bytes() prepared_string = "".join(char_map(c) for c in string) # Normalization - applies Unicode normalization form KC prepared_string = unicodedata.ucd_3_2_0.normalize("NFKC", prepared_string) # Prohibited output - RCF4013 2.3 def is_prohibited(char: str) -> bool: return ( stringprep.in_table_c12(char) # Non-ASCII space characters or stringprep.in_table_c21_c22(char) # Control characters or stringprep.in_table_c3(char) # Private use or stringprep.in_table_c4(char) # Non-character code points or stringprep.in_table_c5(char) # Surrogate codes or stringprep.in_table_c6(char) # Inappropriate for plain text or stringprep.in_table_c7( char ) # Inappropriate for canonical representation or stringprep.in_table_c8( char ) # Change display properties or are deprecated or stringprep.in_table_c9(char) # Tagging characters ) for char in prepared_string: if is_prohibited(char): raise FPDFException( f"The password {string} contains prohibited characters" ) # Bidirectional characters def has_character(string: str, fun: Callable) -> bool: return any(fun(char) for char in string) if has_character(prepared_string, stringprep.in_table_d1): # If a string contains any RandALCat character, the string MUST NOT contain any LCat character. if has_character(prepared_string, stringprep.in_table_d2): raise FPDFException( f"The password {string} contains invalid bidirectional characters." ) # If a string contains any RandALCat character, a RandALCat character MUST be the first character # of the string, and a RandALCat character MUST be the last character of the string. if not ( stringprep.in_table_d1(prepared_string[0]) and stringprep.in_table_d1(prepared_string[-1]) ): raise FPDFException( f"The password {string} contains invalid bidirectional characters." ) if len(prepared_string) > 127: prepared_string = prepared_string[:127] return prepared_string.encode("UTF-8") def padded_password(self, password: str) -> bytearray: """ PDF32000 reference - Algorithm 2: Computing an encryption key Step (a) - Add the default padding at the end of provided password to make it 32 bit long """ if len(password) > 32: password = password[:32] p = bytearray(password.encode("latin1")) p.extend(self.DEFAULT_PADDING[: (32 - len(p))]) return p def generate_owner_password(self) -> str: """ PDF32000 reference - Algorithm 3: Computing the encryption dictionary's O (owner password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here """ m = self.padded_password(self.owner_password) for _ in range(51): m = md5(m) rc4key = m[: (math.ceil(self.key_length / 8))] result = self.padded_password(self.user_password) for i in range(20): new_key = [] for k in rc4key: new_key.append(k ^ i) result = ARC4().encrypt(bytes(new_key), result) return bytes(result).hex() def generate_user_password(self) -> str: """ PDF32000 reference - Algorithm 5: Computing the encryption dictionary's U (user password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here """ m = hashlib.new("md5", usedforsecurity=False) m.update(bytearray(self.DEFAULT_PADDING)) m.update(bytes.fromhex(self.info_id)) result = bytearray(m.digest()) key = self.k for i in range(20): new_key = [] for k in key: new_key.append(k ^ i) result = ARC4().encrypt(bytes(new_key), result) result.extend( (result[x] ^ self.DEFAULT_PADDING[x]) for x in range(16) ) # add 16 bytes of random padding return bytes(result).hex() @classmethod def compute_hash( cls: Type["StandardSecurityHandler"], input_password: bytes, salt: bytes, user_key: bytes = bytearray(), ) -> bytes: """ Algorithm 2B - section 7.6.4.3.4 of the ISO 32000-2:2020 Applied on Security handlers revision 6 """ k = hashlib.sha256(input_password + salt + user_key).digest() round_number = 0 while True: round_number += 1 k1 = input_password + k + user_key # Step (a + b) cipher = Cipher(AES128(k[:16]), modes.CBC(k[16:32])) encryptor = cipher.encryptor() e = encryptor.update(k1 * 64) + encryptor.finalize() # Step (c) # remainder = int.from_bytes(e[:16], byteorder="big") % 3 remainder = sum(e[:16]) % 3 # Step (d) if remainder == 0: k = hashlib.sha256(e).digest() elif remainder == 1: k = hashlib.sha384(e).digest() else: k = hashlib.sha512(e).digest() # Step (e) if round_number >= 64 and e[-1] <= round_number - 32: break return k[:32] def generate_user_password_rev6(self) -> None: """ Generating the U (user password) and UE (user encryption) for security handlers of revision 6 Algorithm 8 - Section 7.6.4.4.7 of the ISO 32000-2:2020 """ user_password = self.prepare_string(self.user_password) if not user_password: user_password = bytearray() user_validation_salt = self.get_random_bytes(8) user_key_salt = self.get_random_bytes(8) u = ( self.compute_hash(input_password=user_password, salt=user_validation_salt) + user_validation_salt + user_key_salt ) self.u = u.hex() key = self.compute_hash(input_password=user_password, salt=user_key_salt) cipher = Cipher(AES256(key), modes.CBC(b"\x00" * 16)) encryptor = cipher.encryptor() ue = encryptor.update(self.k) + encryptor.finalize() self.ue = ue.hex() def generate_owner_password_rev6(self) -> None: """ Generating the O (owner password) and OE (owner encryption) for security handlers of revision 6 Algorithm 9 - Section 7.6.4.4.8 of the ISO 32000-2:2020 """ owner_password = self.prepare_string(self.owner_password) if not owner_password: raise FPDFException(f"Invalid owner password {self.owner_password}") owner_validation_salt = self.get_random_bytes(8) owner_key_salt = self.get_random_bytes(8) o = ( self.compute_hash( input_password=owner_password, salt=owner_validation_salt, user_key=bytes.fromhex(self.u), ) + owner_validation_salt + owner_key_salt ) self.o = o.hex() key = self.compute_hash( input_password=owner_password, salt=owner_key_salt, user_key=bytes.fromhex(self.u), ) cipher = Cipher(AES256(key), modes.CBC(b"\x00" * 16)) encryptor = cipher.encryptor() oe = encryptor.update(self.k) + encryptor.finalize() self.oe = oe.hex() def generate_perms_rev6(self) -> None: """ 7.6.4.4.9 Algorithm 10: Computing the encryption dictionary’s Perms (permissions) value (Security handlers of revision 6) of the ISO 32000-2:2020 """ perms64b = 0xFFFFFFFF00000000 | self.access_permission encrypt_metadata = b"T" if self.encrypt_metadata else b"F" perms_input = ( perms64b.to_bytes(8, byteorder="little", signed=False) + encrypt_metadata + b"adb" + self.get_random_bytes(4) ) # nosemgrep: python.cryptography.security.insecure-cipher-mode-ecb.insecure-cipher-mode-ecb cipher = Cipher(AES256(self.k), modes.ECB()) encryptor = cipher.encryptor() perms = encryptor.update(perms_input) + encryptor.finalize() self.perms = perms.hex() def generate_encryption_key(self) -> bytes: """ PDF32000 reference Algorithm 2: Computing an encryption key """ m = hashlib.new("md5", usedforsecurity=False) m.update(self.padded_password(self.user_password)) m.update(bytes.fromhex(self.o)) m.update( (self.access_permission & 0xFFFFFFFF).to_bytes( 4, byteorder="little", signed=False ) ) m.update(bytes.fromhex(self.info_id)) if self.encrypt_metadata is False and self.version == 4: m.update(bytes([0xFF, 0xFF, 0xFF, 0xFF])) result = m.digest()[: (math.ceil(self.key_length / 8))] for _ in range(50): result = md5(result)[: (math.ceil(self.key_length / 8))] return result
This class is referenced in the main PDF class and is used to handle all encryption functions * Calculate password and hashes * Provide encrypt method to be called by stream and strings * Set the access permissions on the document
Class variables
var DEFAULT_PADDING
-
The type of the None singleton.
Static methods
def compute_hash(input_password: bytes, salt: bytes, user_key: bytes = bytearray(b'')) ‑> bytes
-
Algorithm 2B - section 7.6.4.3.4 of the ISO 32000-2:2020 Applied on Security handlers revision 6
def get_random_bytes(size: int) ‑> bytes
-
https://docs.python.org/3/library/os.html#os.urandom os.urandom will use OS-specific sources to generate random bytes suitable for cryptographic use
def prepare_string(string: str) ‑> bytes
-
PDF2.0 - ISO 32000-2:2020 All passwords for revision 6 shall be based on Unicode. Preprocessing of a user-provided password consists first of normalizing its representation by applying the "SASLPrep" profile (Internet RFC 4013) of the "stringprep" algorithm (Internet RFC 3454) to the supplied password using the Normalize and BiDi options. Next, the password string shall be converted to UTF-8 encoding, and then truncated to the first 127 bytes if the string is longer than 127 bytes
Python offers a stringprep module with the tables mapped in methods
Methods
def encrypt(self, text: str | bytearray | bytes, obj_id: int) ‑> str | bytes
-
Expand source code Browse git
def encrypt( self, text: Union[str, bytearray, bytes], obj_id: int ) -> Union[str, bytes]: """Method invoked by PDFObject and PDFContentStream to encrypt strings and streams""" LOGGER.debug("Encrypting %s", text) return ( self.encrypt_stream(text, obj_id) if isinstance(text, (bytearray, bytes)) else self.encrypt_string(text, obj_id) )
Method invoked by PDFObject and PDFContentStream to encrypt strings and streams
def encrypt_AES_cryptography(self, key: bytes, data: bytes) ‑> bytes
-
Expand source code Browse git
def encrypt_AES_cryptography(self, key: bytes, data: bytes) -> bytes: """Encrypts an array of bytes using AES algorithms (AES 128 or AES 256)""" iv = bytearray(self.get_random_bytes(16)) padder = PKCS7(128).padder() padded_data = padder.update(data) padded_data += padder.finalize() cipher = ( Cipher(AES128(key), modes.CBC(iv)) if self.encryption_method == EncryptionMethod.AES_128 else Cipher(AES256(self.k), modes.CBC(iv)) ) encryptor = cipher.encryptor() data = encryptor.update(padded_data) + encryptor.finalize() iv.extend(data) return iv
Encrypts an array of bytes using AES algorithms (AES 128 or AES 256)
def encrypt_bytes(self, data: bytes, obj_id: int)
-
Expand source code Browse git
def encrypt_bytes(self, data: bytes, obj_id: int): """ PDF32000 reference - Algorithm 1: Encryption of data using the RC4 or AES algorithms Append object ID and generation ID to the key and encrypt the data Generation ID is fixed as 0. Will need to revisit if the application start changing generation ID """ h = hashlib.new("md5", usedforsecurity=False) h.update(self.k) h.update( (obj_id & 0xFFFFFF).to_bytes(3, byteorder="little", signed=False) ) # object id h.update( (0 & 0xFFFF).to_bytes(2, byteorder="little", signed=False) ) # generation id if self.is_aes_algorithm(): h.update(bytes([0x73, 0x41, 0x6C, 0x54])) # add salt (sAlT) for AES key = h.digest() if self.is_aes_algorithm(): return self.encrypt_AES_cryptography(key, data) return ARC4().encrypt(key, data)
PDF32000 reference - Algorithm 1: Encryption of data using the RC4 or AES algorithms Append object ID and generation ID to the key and encrypt the data Generation ID is fixed as 0. Will need to revisit if the application start changing generation ID
def encrypt_stream(self, stream: bytes, obj_id: int) ‑> bytes
-
Expand source code Browse git
def encrypt_stream(self, stream: bytes, obj_id: int) -> bytes: if self.encryption_method == EncryptionMethod.NO_ENCRYPTION: return stream return bytes(self.encrypt_bytes(stream, obj_id))
def encrypt_string(self, string: str, obj_id: int) ‑> str
-
Expand source code Browse git
def encrypt_string(self, string: str, obj_id: int) -> str: if self.encryption_method == EncryptionMethod.NO_ENCRYPTION: return PDFString(string, encrypt=False).serialize() LOGGER.debug("Encrypting string: %s", string) try: string.encode("latin-1") return f"<{bytes(self.encrypt_bytes(string.encode('latin-1'), obj_id)).hex().upper()}>" except UnicodeEncodeError: return f'<{hexlify(bytearray(self.encrypt_bytes(BOM_UTF16_BE + string.encode("utf-16-be"), obj_id))).decode("latin-1")}>'
def generate_encryption_key(self) ‑> bytes
-
Expand source code Browse git
def generate_encryption_key(self) -> bytes: """ PDF32000 reference Algorithm 2: Computing an encryption key """ m = hashlib.new("md5", usedforsecurity=False) m.update(self.padded_password(self.user_password)) m.update(bytes.fromhex(self.o)) m.update( (self.access_permission & 0xFFFFFFFF).to_bytes( 4, byteorder="little", signed=False ) ) m.update(bytes.fromhex(self.info_id)) if self.encrypt_metadata is False and self.version == 4: m.update(bytes([0xFF, 0xFF, 0xFF, 0xFF])) result = m.digest()[: (math.ceil(self.key_length / 8))] for _ in range(50): result = md5(result)[: (math.ceil(self.key_length / 8))] return result
PDF32000 reference Algorithm 2: Computing an encryption key
def generate_owner_password(self) ‑> str
-
Expand source code Browse git
def generate_owner_password(self) -> str: """ PDF32000 reference - Algorithm 3: Computing the encryption dictionary's O (owner password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here """ m = self.padded_password(self.owner_password) for _ in range(51): m = md5(m) rc4key = m[: (math.ceil(self.key_length / 8))] result = self.padded_password(self.user_password) for i in range(20): new_key = [] for k in rc4key: new_key.append(k ^ i) result = ARC4().encrypt(bytes(new_key), result) return bytes(result).hex()
PDF32000 reference - Algorithm 3: Computing the encryption dictionary's O (owner password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here
def generate_owner_password_rev6(self) ‑> None
-
Expand source code Browse git
def generate_owner_password_rev6(self) -> None: """ Generating the O (owner password) and OE (owner encryption) for security handlers of revision 6 Algorithm 9 - Section 7.6.4.4.8 of the ISO 32000-2:2020 """ owner_password = self.prepare_string(self.owner_password) if not owner_password: raise FPDFException(f"Invalid owner password {self.owner_password}") owner_validation_salt = self.get_random_bytes(8) owner_key_salt = self.get_random_bytes(8) o = ( self.compute_hash( input_password=owner_password, salt=owner_validation_salt, user_key=bytes.fromhex(self.u), ) + owner_validation_salt + owner_key_salt ) self.o = o.hex() key = self.compute_hash( input_password=owner_password, salt=owner_key_salt, user_key=bytes.fromhex(self.u), ) cipher = Cipher(AES256(key), modes.CBC(b"\x00" * 16)) encryptor = cipher.encryptor() oe = encryptor.update(self.k) + encryptor.finalize() self.oe = oe.hex()
Generating the O (owner password) and OE (owner encryption) for security handlers of revision 6 Algorithm 9 - Section 7.6.4.4.8 of the ISO 32000-2:2020
def generate_passwords(self, file_id: str) ‑> None
-
Expand source code Browse git
def generate_passwords(self, file_id: str) -> None: """File_id is the first hash of the PDF file id""" self.file_id = file_id self.info_id = file_id[1:33] if self.revision == 6: self.k = self.get_random_bytes(32) self.generate_user_password_rev6() self.generate_owner_password_rev6() self.generate_perms_rev6() else: self.o = self.generate_owner_password() self.k = self.generate_encryption_key() self.u = self.generate_user_password()
File_id is the first hash of the PDF file id
def generate_perms_rev6(self) ‑> None
-
Expand source code Browse git
def generate_perms_rev6(self) -> None: """ 7.6.4.4.9 Algorithm 10: Computing the encryption dictionary’s Perms (permissions) value (Security handlers of revision 6) of the ISO 32000-2:2020 """ perms64b = 0xFFFFFFFF00000000 | self.access_permission encrypt_metadata = b"T" if self.encrypt_metadata else b"F" perms_input = ( perms64b.to_bytes(8, byteorder="little", signed=False) + encrypt_metadata + b"adb" + self.get_random_bytes(4) ) # nosemgrep: python.cryptography.security.insecure-cipher-mode-ecb.insecure-cipher-mode-ecb cipher = Cipher(AES256(self.k), modes.ECB()) encryptor = cipher.encryptor() perms = encryptor.update(perms_input) + encryptor.finalize() self.perms = perms.hex()
7.6.4.4.9 Algorithm 10: Computing the encryption dictionary’s Perms (permissions) value (Security handlers of revision 6) of the ISO 32000-2:2020
def generate_user_password(self) ‑> str
-
Expand source code Browse git
def generate_user_password(self) -> str: """ PDF32000 reference - Algorithm 5: Computing the encryption dictionary's U (user password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here """ m = hashlib.new("md5", usedforsecurity=False) m.update(bytearray(self.DEFAULT_PADDING)) m.update(bytes.fromhex(self.info_id)) result = bytearray(m.digest()) key = self.k for i in range(20): new_key = [] for k in key: new_key.append(k ^ i) result = ARC4().encrypt(bytes(new_key), result) result.extend( (result[x] ^ self.DEFAULT_PADDING[x]) for x in range(16) ) # add 16 bytes of random padding return bytes(result).hex()
PDF32000 reference - Algorithm 5: Computing the encryption dictionary's U (user password) value The security handler is only using revision 3 or 4, so the legacy r2 version is not implemented here
def generate_user_password_rev6(self) ‑> None
-
Expand source code Browse git
def generate_user_password_rev6(self) -> None: """ Generating the U (user password) and UE (user encryption) for security handlers of revision 6 Algorithm 8 - Section 7.6.4.4.7 of the ISO 32000-2:2020 """ user_password = self.prepare_string(self.user_password) if not user_password: user_password = bytearray() user_validation_salt = self.get_random_bytes(8) user_key_salt = self.get_random_bytes(8) u = ( self.compute_hash(input_password=user_password, salt=user_validation_salt) + user_validation_salt + user_key_salt ) self.u = u.hex() key = self.compute_hash(input_password=user_password, salt=user_key_salt) cipher = Cipher(AES256(key), modes.CBC(b"\x00" * 16)) encryptor = cipher.encryptor() ue = encryptor.update(self.k) + encryptor.finalize() self.ue = ue.hex()
Generating the U (user password) and UE (user encryption) for security handlers of revision 6 Algorithm 8 - Section 7.6.4.4.7 of the ISO 32000-2:2020
def get_encryption_obj(self) ‑> EncryptionDictionary
-
Expand source code Browse git
def get_encryption_obj(self) -> EncryptionDictionary: """Return an encryption dictionary""" return EncryptionDictionary(self)
Return an encryption dictionary
def is_aes_algorithm(self) ‑> bool
-
Expand source code Browse git
def is_aes_algorithm(self) -> bool: return self.encryption_method in ( EncryptionMethod.AES_128, EncryptionMethod.AES_256, )
def padded_password(self, password: str) ‑> bytearray
-
Expand source code Browse git
def padded_password(self, password: str) -> bytearray: """ PDF32000 reference - Algorithm 2: Computing an encryption key Step (a) - Add the default padding at the end of provided password to make it 32 bit long """ if len(password) > 32: password = password[:32] p = bytearray(password.encode("latin1")) p.extend(self.DEFAULT_PADDING[: (32 - len(p))]) return p
PDF32000 reference - Algorithm 2: Computing an encryption key Step (a) - Add the default padding at the end of provided password to make it 32 bit long